The opposite side of the world to Shamakhi is Adamstown, Pitcairn.
Azerbaijan
Continent: Asia
Coordinates: 40.631, 48.641
South Pacific Ocean
Exact location on the other side of the world
Coordinates: -40.631, -131.359
Pitcairn
Adamstown is the closest city to Shamakhi's antipodal point (1,730 km).
The antipodal city to Shamakhi is Adamstown. This means that, among all the populated locations in the world, the farthest city from Shamakhi is Adamstown.
The distance from Shamakhi to Adamstown is about 18,000 kilometers. A direct flight would take around 20 hours, but there aren't commercial routes between these cities.
This table contains the populated locations that are closest to Shamakhi's antipode. These are the farthest cities in the world from Shamakhi.
City | Country | Distance from antipode | Coordinates |
---|---|---|---|
Adamstown | Pitcairn | 1,730 km | (-25.066, -130.101) |
Rikitea, Îles Tuamotu-Gambier | French Polynesia | 1,971 km | (-23.123, -134.969) |
Hanga Roa, Valparaíso | Chile | 2,508 km | (-27.153, -109.424) |
Tapuarava, Îles Tuamotu-Gambier | French Polynesia | 2,505 km | (-18.466, -136.463) |
Mataura, Îles Australes | French Polynesia | 2,560 km | (-23.347, -149.485) |
Avera, Îles Australes | French Polynesia | 2,753 km | (-22.478, -151.351) |
Moerai, Îles Australes | French Polynesia | 2,755 km | (-22.451, -151.342) |
Teahupoo, Îles du Vent | French Polynesia | 3,054 km | (-17.846, -149.267) |
Tautira, Îles du Vent | French Polynesia | 3,058 km | (-17.747, -149.161) |
Vairao, Îles du Vent | French Polynesia | 3,061 km | (-17.783, -149.283) |
Local time:
Time Zone: Asia/Baku
Coordinates: 40.6314° N 48.6414° E
Elevation: 687 m (2,254 ft)
Local time:
Time Zone: Pacific/Pitcairn
Coordinates: 25.066° S 130.1015° W
Elevation: 67 m (220 ft)
The antipode can be calculated by understanding the geographic coordinates and applying simple formulas. We will use the following variables:
Step 1: Obtain the geographic coordinates of Shamakhi
The DMS coordinates are: 40°37'53.1'' N 48°38'28.9'' E .
Calculations are easier by using the decimal format, hence:
LatO = 40.63141°
LngO = 48.64137°
Step 2: Calculate the latitude
LatA = - LatO = -40.63141°
Since the latitude is positive (north direction), the antipode must be negative (south direction).
Step 3: Calculate the longitude
LngA = LngO ± 180° = 48.64137 - 180° = -131.35863°
Since the longitude is positive, we subtract 180° to ensure the final value lies between (-180, 180). If it were the other way around, we would sum 180° for the same reason.
Result:
The antipode of Shamakhi is located on coordinates: (LatA, LngA) = (-40.63141, -131.35863)
In DMS format: 40°37'53.1'' N 48°38'28.9'' E .