The opposite side of the world to Teplice is Waitangi, Chatham Islands, New Zealand.
Czechia
Continent: Europe
Coordinates: 50.640, 13.825
South Pacific Ocean
Exact location on the other side of the world
Coordinates: -50.640, -166.175
New Zealand
Waitangi is the closest city to Teplice's antipodal point (1,080 km).
The antipodal city to Teplice is Waitangi. This means that, among all the populated locations in the world, the farthest city from Teplice is Waitangi.
The distance from Teplice to Waitangi is about 19,000 kilometers. A direct flight would take around 21 hours, but there aren't commercial routes between these cities.
This table contains the populated locations that are closest to Teplice's antipode. These are the farthest cities in the world from Teplice.
City | Country | Distance from antipode | Coordinates |
---|---|---|---|
Waitangi, Chatham Islands | New Zealand | 1,080 km | (-43.954, -176.560) |
Castlepoint, Wellington Region | New Zealand | 1,738 km | (-40.900, 176.217) |
Waipawa, Wellington Region | New Zealand | 1,742 km | (-41.412, 175.515) |
Akaroa, Canterbury | New Zealand | 1,745 km | (-43.804, 172.968) |
Gladstone, Wellington Region | New Zealand | 1,758 km | (-41.083, 175.650) |
Martinborough, Wellington Region | New Zealand | 1,763 km | (-41.208, 175.430) |
Masterton, Wellington Region | New Zealand | 1,767 km | (-40.960, 175.658) |
Greytown, Wellington Region | New Zealand | 1,771 km | (-41.078, 175.460) |
Solway, Wellington Region | New Zealand | 1,770 km | (-40.958, 175.610) |
Diamond Harbour, Canterbury | New Zealand | 1,772 km | (-43.629, 172.725) |
Local time:
Time Zone: Europe/Prague
Coordinates: 50.6404° N 13.8245° E
Elevation: 229 m (751 ft)
Local time:
Time Zone: Pacific/Chatham
Coordinates: 43.9535° S 176.5597° W
Elevation: 18 m (59 ft)
The antipode can be calculated by understanding the geographic coordinates and applying simple formulas. We will use the following variables:
Step 1: Obtain the geographic coordinates of Teplice
The DMS coordinates are: 50°38'25.4'' N 13°49'28.2'' E .
Calculations are easier by using the decimal format, hence:
LatO = 50.6404°
LngO = 13.82451°
Step 2: Calculate the latitude
LatA = - LatO = -50.6404°
Since the latitude is positive (north direction), the antipode must be negative (south direction).
Step 3: Calculate the longitude
LngA = LngO ± 180° = 13.82451 - 180° = -166.17549°
Since the longitude is positive, we subtract 180° to ensure the final value lies between (-180, 180). If it were the other way around, we would sum 180° for the same reason.
Result:
The antipode of Teplice is located on coordinates: (LatA, LngA) = (-50.6404, -166.17549)
In DMS format: 50°38'25.4'' N 13°49'28.2'' E .