The opposite side of the world to Ed Damer is Tautira, Îles du Vent, French Polynesia.
Sudan
Continent: Africa
Coordinates: 17.599, 33.972
South Pacific Ocean
Exact location on the other side of the world
Coordinates: -17.599, -146.028
French Polynesia
Tautira is the closest city to Ed Damer's antipodal point (333 km).
The antipodal city to Ed Damer is Tautira. This means that, among all the populated locations in the world, the farthest city from Ed Damer is Tautira.
The distance from Ed Damer to Tautira is about 20,000 kilometers. A direct flight would take around 22 hours, but there aren't commercial routes between these cities.
This table contains the populated locations that are closest to Ed Damer's antipode. These are the farthest cities in the world from Ed Damer.
City | Country | Distance from antipode | Coordinates |
---|---|---|---|
Tautira, Îles du Vent | French Polynesia | 333 km | (-17.747, -149.161) |
Pueu, Îles du Vent | French Polynesia | 339 km | (-17.738, -149.224) |
Teahupoo, Îles du Vent | French Polynesia | 345 km | (-17.846, -149.267) |
Vairao, Îles du Vent | French Polynesia | 346 km | (-17.783, -149.283) |
Hitiaa | French Polynesia | 347 km | (-17.600, -149.300) |
Faone, Îles du Vent | French Polynesia | 348 km | (-17.669, -149.309) |
Mahaena | French Polynesia | 349 km | (-17.567, -149.317) |
Tohautu, Îles du Vent | French Polynesia | 349 km | (-17.761, -149.317) |
Afaahiti, Îles du Vent | French Polynesia | 350 km | (-17.744, -149.324) |
Tiarei | French Polynesia | 351 km | (-17.533, -149.333) |
Local time:
Time Zone: Africa/Khartoum
Coordinates: 17.599° N 33.9721° E
Elevation: 354 m (1,161 ft)
Local time:
Time Zone: Pacific/Tahiti
Coordinates: 17.7474° S 149.1612° W
Elevation: 4 m (13 ft)
The antipode can be calculated by understanding the geographic coordinates and applying simple formulas. We will use the following variables:
Step 1: Obtain the geographic coordinates of Ed Damer
The DMS coordinates are: 17°35'56.3'' N 33°58'19.4'' E .
Calculations are easier by using the decimal format, hence:
LatO = 17.59898°
LngO = 33.97205°
Step 2: Calculate the latitude
LatA = - LatO = -17.59898°
Since the latitude is positive (north direction), the antipode must be negative (south direction).
Step 3: Calculate the longitude
LngA = LngO ± 180° = 33.97205 - 180° = -146.02795°
Since the longitude is positive, we subtract 180° to ensure the final value lies between (-180, 180). If it were the other way around, we would sum 180° for the same reason.
Result:
The antipode of Ed Damer is located on coordinates: (LatA, LngA) = (-17.59898, -146.02795)
In DMS format: 17°35'56.3'' N 33°58'19.4'' E .